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Abstract
A translational gauge approach of the Einstein type is proposed for obtaining the
stresses that are due to non-singular screw dislocation. The stress distribution
of the second order around the screw dislocation is classically known for the
hollow circular cylinder with traction-free external and internal boundaries.
The inner boundary surrounds the dislocation’s core, which is not captured by
the conventional solution. The present gauge approach enables us to continue
the classically known quadratic stresses inside the core. The gauge equation is
chosen in the Hilbert–Einstein form, and it plays the role of non-conventional
incompatibility law. The stress function method is used, and it leads to the
modified stress potential given by two constituents: the conventional one, say,
the ‘background’ and a short-ranged gauge contribution. The latter just causes
additional stresses, which are localized. The asymptotic properties of the
resulting stresses are studied. Since the gauge contributions are short-ranged,
the background stress field dominates sufficiently far from the core. The outer
cylinder’s boundary is traction-free. At sufficiently moderate distances, the
second-order stresses acquire regular continuation within the core region, and
the cut-off at the core does not occur. Expressions for the asymptotically far
stresses provide self-consistently new length scales dependent on the elastic
parameters. These lengths could characterize an exteriority of the dislocation
core region.
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1. Introduction

A model of non-singular screw dislocation is proposed in the present paper. The description
is based on the translational gauge approach of the Einstein type. The aim of the paper is to
investigate the corresponding stress problem in the second-order approximation.

Solutions to the stress problem for the edge and screw dislocations by means of the
theoretical elasticity are known both in the linear and quadratic approximations (see [1–4]).
The stress distributions of the first order are singular on the dislocation lines. Beyond the
scope of the linear elasticity, the dislocations have been conventionally considered in [5–8] (the
nonlinear approaches are reviewed in [9, 10]). The stress solutions provided by [5–8] are valid
for the hollow cylinders subject to the traction-free conditions on the external and internal
boundaries. The corresponding internal radii, as the dislocation core boundaries, remain
unspecified. Note that ‘core’ is rather a crystalline notion since the theoretical elasticity does
not have an appropriate length scale.

The relevance of the second-order effects in the theoretical elasticity to the lattice
modelling of the dislocations has been discussed in [9]. It is not sufficient to use only the
linear elasticity for the description of strongly distorted regions of the dislocation cores (see
also [3, 4, 9, 10]). Self-consistency of appropriate boundary-value problems at the dislocation
cores also seems theoretically challenging.

The Lagrangian field theory based on the gauge group T(3)×⊃ SO(3) has been proposed in
[11, 12] as a non-conventional approach to the defects in the elastic continua. The Maxwell-
type Lagrangian has been proposed to govern the translational gauge potentials. The ordinary
screw dislocation, as an asymptotic configuration, is allowed for in [11, 12]. Owing to the
relevance of higher approximations, it has been further attempted in [13] to use [11] for
obtaining the corresponding stresses of the second order around the screw dislocation.

An important modification has later been proposed in [14] for the translational gauge
equation advanced in [11, 12]. The modification is concerned with the corresponding driving
source. In its new form, it is given by the difference between the stress tensor of the model
and the stress due to a classical background dislocation. In this particular case, the choice
of the background corresponds to the screw dislocation. The linear approach of [14] results
in a modified screw dislocation, which is equivalent, for sufficiently large distances, to the
ordinary one. It is crucial that additional short-ranged stresses, which remove the classical
stress singularities, arise. However, it is problematic [15] to obtain analogously a non-singular
edge dislocation by means of the translational Lagrangian [11] alone.

Further, the translational gauge approach to the elimination of the dislocation singularities
has been developed in [15–19]. The driving source of the gauge equations in [15–19] is the
same as in [14], i.e., it is given in the form of the difference of two stresses. The same modified
screw dislocation as in [14] is allowed for in [15, 17] as well.

Non-local elasticity should also be recalled as a non-gauge opportunity for extending
the conventional elasticity framework. Similar to [14], the singularity-less screw dislocation
has already been independently obtained in [20] (see also [21]) by means of the non-local
elasticity. Moreover, the first strain gradient elasticity [22–27], as well as the generalized
elasticity [28–30], also admits non-singular solutions for the dislocations.

Let us turn again to the gauge approach [13], where the method of stress functions [5, 7]
is used. In principle, the corresponding Kröner ansatz for the screw dislocation, in the second
order, is the same as for the edge dislocation, in the first order. However, according to [15], the
use of the Maxwell-type translational Lagrangian does not allow for the Airy stress function
with a correct numerical coefficient. Although this Lagrangian is successful for the screw
dislocation in the first order, its usage beyond the scope of the linear approximation looks
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doubtful. Moreover, the elastic energy in [13] does not contain the terms of third order, which
are accounted for in [5–7]. There is no continuation of the stresses within the core region.
Therefore, the experience of [13] looks, to a certain extent, incomplete.

In principle, the translational gauge approaches discussed in [15–19] look promising for
study in the second order. Indeed, the length scales are ‘generated’ in these models, and the
singularities are smoothed out within compact core regions. The active interest in modelling
the defects and their cores, as well as the importance of the higher approximations, stimulate
us to investigate the gauge models further in order to gain more realistic descriptions of the
core regions.

Specifically, [15] is based on the Hilbert–Einstein gauge Lagrangian. Two solutions are
found therein, which modify, for short distances, the Airy and Prandtl dislocational stress
functions. The stress singularities of both classical dislocations are thus removed. However,
certain components of the modified stresses in the ‘edge’ case do not behave properly at
infinity.

The approach used in [16–19] is based on the Lagrangian quadratic in the T(3)-gauge
field strength. This quadratic form is based on three gauge-material constants1 and therefore
is different from that in [14]. The inclusion of the terms corresponding to the energy of the
rotation gradients enables one to obtain the modified edge dislocation with an appropriate
large distance behaviour (see [19]). The model from [19] contains, in general, ten material
constants.

The model [15] looks attractive for study in the quadratic approximation. Indeed, the
Kröner ansatz for it can be specified, in each order, appropriately. The gauge approach, say,
[16–19], would require a rather sophisticated choice of the gauge parameters for different
orders. The Hilbert–Einsteinian approach implies a single-gauge parameter and looks
preferable because of the essential nonlinearity of descriptions based on it. Besides, the
corresponding Einstein tensor is important in the conventional dislocation theory as well.

In the present paper, the model [15] is investigated along the line of [5–7]. The background
defect is given by the straight screw dislocation in the infinite circular cylinder. Its stress field
is taken up to the second-order terms considered in [7]. The Einstein-type gauge equation
plays the role of unconventional incompatibility law. The stress function approach is used.
The stress function of second order is obtained. It is equal to the sum of the background
and non-conventional parts. The latter results in a continuation of the stresses within the core
region, and the cut-off at the core’s boundary is avoided. The asymptotic properties of the
second-order stresses are studied. New length scales of the ‘gauge’ origin are provided, which
could characterize an exterior structure of the dislocation core.

We do not discuss in detail a complicated theme such as the dislocation cores (see
[3, 4, 9, 10, 32, 33]). For instance, [34, 35] are the first attempts to incorporate the lattice
periodicity and to display the finiteness of the cores. Early attempts at treating the screw
dislocations and their cores atomistically are given in [36–38]. A singularity-less screw
dislocation has also been obtained in [39] by means of the quasi-continuum approach (see
[40] as well). In their turn, the gauge fields are important in modern condensed matter physics
(see [41–43]). Certain applications of [11, 12] can be found in [44–49].

The paper consists of six sections. Section 1 is introductory (see also [14–19]). Section 2
outlines the Einstein-type gauge equation. Section 3 specifies the perturbative approach. The
gauge equation is solved, and the modified stress potential is obtained in section 4. The stress

1 For a special choice of the parameters, the gauge Lagrangian in [16–19] is equivalent to the Lagrangians either in [14]
or in [15]. Note that the most general eight-parameter three-dimensional geometric Lagrangian is known [31], which
includes, in addition to the Hilbert–Einstein term, the terms quadratic in the components of the differential-geometric
torsion and curvature.
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fields and their asymptotics are investigated in section 5. Section 6 closes the paper. Details of
the calculation are given in appendices A and B. The present paper is a refined and improved
(concerning the large distance behaviour of the stresses) version of [50]. Bold-faced letters
are reserved for second-rank tensors, and appropriate indices can easily be restored.

2. The Einstein-type gauge equation

The Einsteinian gauge equation is outlined in the present section. For more on the appropriate
differential geometry, one should refer to [10, 42, 51]. The Eulerian picture is chosen
in the present approach instead of the Lagrangian one accepted in [15]. The initial and
final states of the dislocated body are referred to the coordinate systems {xi} and {xa},
respectively. The corresponding squared length elements are expressed as gij dxi dxj and
ηab dxa dxb (throughout the paper, the indices repeated imply summation). Let us define the
frame components ea

i by the relation ∂i = ea
i ∂a (henceforth the partial derivatives ∂/∂xi are

denoted by ∂i). The co-frame components E i
a are given by the one-form dxi = E i

a dxa . The
components E i

a and their duals ea
i are orthogonal: ea

i E i
b = δa

b , e
a
i E

j
a = δ

j

i . For the metric ηab,
we get ηab = gijE i

aE
j

b .
The Eulerian strain tensor is referred to the deformed state, and it measures a deviation

between the final and initial configurations [10]. Let us map an initial state to the deformed
one: x �−→ ξ(x). Then the difference

ηab dξa dξb − gij dxi dxj = 2eab dξa dξb, (2.1)

where

2eab ≡ ηab − gab, gab ≡ gijBi
aB

j

b , (2.2)

defines the Eulerian strain tensor (e)ab ≡ eab. The metric gab in (2.2) is called the Cauchy
deformation tensor. Here Bi

a are given by the one-form dxi = Bi
a dξa as follows [10]:

Bi
a ≡ ∂xi

∂ξa
= E i

a − E i
b

(η)

∇au
b, (2.3)

provided that the displacement ξ − x is expanded as ξ i − xi = uaE i
a . The covariant derivative

(η)

∇a in (2.3) is defined by the requirement that the components E i
a are covariantly constant:

(η)

∇aE i
b ≡ ∂aE i

b −
{

c

ab

}
η

E i
c = 0, (2.4)

where
{

c
ab

}
η

is the Christoffel symbol of second kind. The metric ηab = E i
aEbi is also

covariantly constant because of (2.4). In turn, (2.4) allows one to express the Christoffel
symbols in terms of the metric ηab (see [42]).

To implement the gauging of the group T (3), we extend the co-frame components Bi
a

(2.3) by means of the so-called compensating fields

Bi
a ≡ ∂xi

∂ξa
− ϕi

a = E i
a − (

E i
b

(η)

∇au
b + ϕi

a

)
. (2.5)

The entries ϕi
a are the translational gauge potentials, which behave under the local

transformations xi −→ xi + ηi(x) as follows:

∂xi

∂ξa
−→ ∂xj

∂ξa

(
δi
j +

∂ηi

∂xj

)
,

(2.6)

ϕi
a −→ ϕi

a +
∂xj

∂ξa

∂ηi

∂xj
.
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Shifts (2.6) ensure the gauge invariance of Bi
a (2.5) (and of definitions (2.2), as well).

Motivation of (2.5) should be traced back to T(3)×⊃ SO(3) gauging and to the corresponding
Cartan structure equations [11] (see also [52, 53]). The occurrence of the non-trivial core
region for the screw dislocation in question (i.e., the appearance of the short-ranged stresses)
should be associated with the gauge variables ϕi

a . The Eulerian strain (2.2) takes the gauged
form

2eab = (η)

∇aub + ϕab +
(η)

∇bua + ϕba − (
(η)

∇aub + ϕab)(
(η)

∇bua + ϕba). (2.7)

When ϕ is zero, (2.7) is reduced to the conventionally looking (background) strain tensor in
the Eulerian picture [10].

The differential-geometric approach of the present paper is the same as in [15], i.e., the
so-called teleparallel framework (see [52] for a quick remind) is adopted as the most suitable
for describing the dislocations [51]. Let us consider the Riemann–Christoffel curvature tensor
Rabc

d :

Rabc
d = ∂a

{
d

bc

}
g

− ∂b

{
d

ac

}
g

+

{
d

ae

}
g

{
e

bc

}
g

−
{

d

be

}
g

{
e

ac

}
g

, (2.8)

where the Christoffel symbols are calculated for the metric gab (2.2) (the subscript ‘g’) given

by Bi
a (2.5). The metric gab is covariantly constant, i.e.,

(g)

∇agbc = 0 is fulfilled, where
(g)

∇a

is defined similar to (2.4). We obtain from
(η)

∇aηbc = 0 the following relation between the
Christoffel symbols:{

c

ab

}
η

−
{

c

ab

}
g

= 2eab
c, (2.9a)

2eab
c ≡ gce(

(η)

∇aebe +
(η)

∇beae − (η)

∇eeab), (2.9b)

where (2.2) is taken into account [10].
Let us define the Einstein tensor Gef ≡ 1

4E
eabEf cd Rabcd , where Eabc is the Levi-Civita

tensor defined by means of the metric ηab. Then, the Einstein-type gauge equation [15] takes
the form

Gef = 1

2�
(σ ef − (σbg)

ef ). (2.10)

Here � is a constant factor at the Hilbert–Einstein-gauge Lagrangian. The geometry of the

deformed state is Euclidean in the Eulerian approach. The corresponding curvature
(η)

R abc
d is

zero for the metric ηab. We substitute (2.9a) into (2.8) and use the vanishing of
(η)

R abc
d . Then,

(2.10) is re-expressed:

−EeabEf cd
(η)

∇a

(η)

∇cebd = 1

2�
(σ ef − (σbg)

ef ) + 2EeabEf cdeadlebc
l . (2.11)

The differential-geometric torsion, as an independent degree of freedom, is not considered. It is
just the Riemann–Christoffel curvature that is subject to the gauge equation (2.10). Therefore,
(2.11) governs only the variables related to the metric, i.e., the corresponding strains.

The variational derivation of (2.10) can be discussed along the line of [15]. The right-hand
side of (2.10) is given by (2�)−1(σ − σbg), where σbg implies the background stress tensor.
The deviation of the stress tensor of the model from σbg plays the role of the driving source in
the gauge equation. The parameter � characterizes an energy scale intrinsic to the gauge field
ϕ: it makes the driving source dimensionless. In the present paper, σbg implies the stress
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field of the straight screw dislocation lying along an infinite cylindric body. Both σ and σbg

respect the equilibrium equations:
(η)

∇aσ
ab = 0,

(η)

∇a(σbg)
ab = 0. (2.12)

A more detailed consideration of the gauge geometry behind the model in question should
be done elsewhere, but several references should be mentioned in addition to those listed in
[15]. For instance, useful indications concerning the translational gauge geometry can be
found in [54, 55]. A topological picture is proposed in [56], which includes the dislocations
and extra-matter by means of the torsion and non-metricity, respectively. Moreover, [57]
provides a further development of the geometric approach [31].

3. Specification of the gauge equation

3.1. The stress function method

We shall investigate the gauge equation (2.11) using the method of stress functions proposed in
[5, 7] for solving the internal stress problems in the incompatible elasticity. An exposition of
[7] can be found in [10] devoted to a review of the dislocation problems in nonlinear elasticity.
Certain details omitted below can be restored with the help of [7, 10].

We shall use the stress function approach in a successive approximation form. Let us
represent the strain and the stress tensors perturbatively

e ≈ (1)
e +

(2)
e , σ ≈ (1)

σ +
(2)
σ , (3.1)

where
(2)
e and

(2)
σ are of second-order smallness in comparison with

(1)
e and

(1)
σ . Representation

(2.7) implies that each contribution in (3.1) consists of two parts: owing to the background and
to the non-conventional origin. Following [7], we shall investigate only the stress problem.
Finding the relationship between the non-conventional stresses and the gauge potentials is
beyond the scope of the present paper. Substituting (3.1) into (2.11) and (2.12), we obtain
equations of the first (i = 1) and second (i = 2) orders:

∇ · (i)
σ = 0, (3.2a)

Inc
(i)
e = 1

2�
δ

(i)
σ +

(i−1)

Q . (3.2b)

The tensor notations [10] are used in (3.2). For instance, the left-hand side of (3.2a) takes the
form of the divergence of the tensor of second rank. The notation in (3.2b) is

(Inc
(i)
e )ab ≡ −EacdEbf e∇c∇f

(i)
e de, (3.3a)

(δ
(i)
σ)ab ≡ (i)

σ ab − (
(i)
σbg)

ab, (3.3b)

(0)

Qab ≡ 0,
(1)

Qab ≡ 2EacdEbf e(1)
e cel

(1)
e df

l, (3.3c)

where ‘Inc’ is the double curl incompatibility operator, ∇ is the covariant derivative
(η)

∇a(≡∇a)

and the indices are raised and lowered by means of the metric η.
Equations (3.2) look similar to the conventional equilibrium and incompatibility laws: see

equations (622) and (623) in [10]. The equilibrium equations of the first and second orders are
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given by (3.2a). The gauge equations (3.2b) play the role of non-conventional incompatibility

conditions. However, there exists a distinction that is due to (2�)−1δ
(i)
σ in (3.2b). This term

is just responsible for the short-ranged behaviour of the gauge parts of the resulting stress

functions. Moreover,
(1)

Q in (3.3c) is free from the torsion tensor in our approach.
The elastic energy of an isotropic body is chosen in the Eulerian representation as follows:

W(e) = jI 2
1 (e) + kI2(e) + l′I 3

1 (e) + m′I1(e)I2(e) + n′I3(e), (3.4)

where j = µ + λ/2 and k = −2µ are the elastic moduli of second order (λ and µ are the
Lamé constants), and l′,m′, and n′ are the elastic moduli of third order. Once W(e) has been

chosen in the form (3.4), the constitutive law relates
(i)
e with

(i)
σ (i = 1, 2) as follows [7]:

(i)
e = C1I1(

(i)
σ)η + C4

(i)
σ +

(i−1)

Ψ , (3.5)

where
(0)

Ψ ≡ 0 and

(1)

Ψ ≡ (
C2I

2
1 (

(1)
σ) + C3I2(

(1)
σ)

)
η + C5I1(

(1)
σ)

(1)
σ + C7I3(

(1)
σ)(

(1)
σ)−1. (3.6)

Here, the I1,2,3(·) are the tensor invariants [58]. The numerical coefficients C1 and C4 are

C1 = −(2µ)
−1 ν

1 + ν
, C4 = (2µ)

−1
, (3.7)

where ν = λ/(2(λ + µ)) is the Poisson ratio. The coefficients C2, C3, C5 and C7 can be
expressed (see [7, 10]) in terms of the elastic moduli of second and third orders (3.4), although
this is not used below. More details on the relation of λ, µ and l′,m′, n′ with the elastic moduli
of crystals can be found in [4, 10].

The equilibrium equations (3.2a) should be fulfilled with the help of the Kröner ansatz

(i)
σ = Inc

(i)
χ. (3.8)

Substituting the constitutive relations (3.5) into (3.2b) and using (3.8), we obtain equations

for the components of the stress potential
(i)
χ:




(i)
χ ab + a(∇a∇b − ηab
)
I1(

(i)
χ) + ((1 − a)∇a∇b + aηab
)∇c∇d

(i)
χ cd

−

(∇a∇c

(i)
χ c

b + ∇b∇c

(i)
χ c

a

) = κ2(δ
(i)
σ)ab + 2µ

(i)

S (ab), (3.9)

where

(1)

S ab ≡ 0,
(2)

S (ab) ≡
(1)

Q(ab) − (Inc
(1)

Ψ)(ab),


 is the Laplacian and the δ
(i)
σ are expressed by means of (3.3b) and (3.8). In addition,

(1)

Q and
(1)

Ψ are given by (3.3c) and (3.6), accordingly. The curly brackets around the indices imply
symmetrization, and we use the dimensionless parameters κ2 ≡ µ/� and a (see [11, 12]):

a ≡ λ

3λ + 2µ
= 1

1 + ν−1
, 1 − a = 2(λ + µ)

3λ + 2µ
= 1

1 + ν
. (3.10)
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3.2. The gauge equations in the first and second orders

Let us adjust (3.9) to the special problem in question. We replace the derivatives ∇a by the
partial derivatives ∂a , where xa are the coordinates in the final state, and assume ∂3 ≡ 0 (see
[7, 10]). Conventional notation is adopted for the components of the stress potential which
are non-trivial [51]:

µ
(i)

φ ≡ ∂2
(i)
χ 13 − ∂1

(i)
χ 23, i = 1, 2,

(3.11)
f ≡ (2)

χ 33, p ≡ −∂2
11

(2)
χ 22 − ∂2

22

(2)
χ 11 + 2∂2

12

(2)
χ 12.

The other components of
(i)
χ are zero. The background stress tensor σbg is also given by (3.8),

but the corresponding stress potential is labelled appropriately:
(i)
χbg.

3.2.1. The first order. In the first order, only the stress potential
(1)

φ (3.11) is nonzero for the
screw dislocation. The corresponding governing equation appears from (3.9) as follows [15]:

(
 − κ2)(
(1)

φ −
(1)

φ bg) = bδ(2)(x), (3.12)

where
(1)

φ bg ≡ (−b/2π) log ρ is the background stress potential and b is the Burgers vector
length. The Burgers vector is parallel to the line of the screw dislocation and its length is the
perturbative expansion parameter. The axial symmetry of the final state stimulates the usage
of the cylindric coordinates ρ, ϕ and z instead of {xa} (ρ and ϕ are chosen in the (x1, x2)-plane
and z ≡ x3). We obtain from (3.12) the stress potential of the first order:

(1)

φ =
(1)

φ bg − fS, fS ≡ (b/2π)K0(κρ), (3.13)

where K0 is the modified Bessel function [59].
The stress σφz is non-trivial for the modified screw dislocation in the first order, and we

express it, using (3.8) and (3.11):

σφz = −µ∂ρ

(1)

φ = bµ

2π
ρ

−1
(1 − κρK1(κρ)). (3.14)

Equation (3.14) demonstrates a core region at ρ � κ
−1

: the gauge correction to the classical
long-ranged law 1/ρ is exponentially small outside this region. Inside it, the law 1/ρ is
replaced by another non-singular one. More detailed information on the numerical behaviour
of (3.14) (including a treatment of κ−1 in terms of interatomic spacing) can be found in [14,
17]. In the present paper, it is assumed that b = O(κ−1). Solution (3.14) is in agreement with
[14, 17] (the translational gauging), [20] (the non-local elasticity) and [22, 26, 27] (the strain
gradient elasticity). This is because the Helmholtz-type governing equations similar to (3.12)
are essential in the approaches mentioned.

Certain analogies in the structure of the tensor laws governing the electrostatic of
dielectrics and the elastostatic problems have been discussed in [60]. It looks hopeful that
the short-ranged constituent of the first-order solution presented here is also falling into the
class of problems considered in [60]. In addition, within an independent framework though,
strongly localized stress potentials turn out to be also responsible for the Debye-like screening
effects in the dislocation arrangements [61].

3.2.2. The second order. In the second order, from (3.9) we obtain the following gauge
equations2:

2 Henceforth, Q and Ψ are used without the superscript.
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−∂2
22[(1 − a)p + a
f − κ2(f − fbg)] = 2µ

[
Q11 + ∂2

22�33
]
,

−∂2
11[(1 − a)p + a
f − κ2(f − fbg)] = 2µ

[
Q22 + ∂2

11�33
]
, (3.15a)

∂2
12[(1 − a)p + a
f − κ2(f − fbg)] = −2µ∂2

12�33,

(1 − a)

f + a
p − κ2(p − pbg) = 2µ
[
Q33 − ∂2

12

(
�12 + �21

)
+ ∂2

11�22 + ∂2
22�11

]
.

(3.15b)

Equations (3.15) describe the stress potentials of second order f and p (3.11). In addition,

there are equations to determine
(2)

φ . But since
(2)

φ bg is zero [7], we put consistently
(2)

φ ≡ 0.
Further, it is necessary to express Q in (3.3c) and Ψ in (3.6) in terms of the first-order solution
(3.13). Taking ∂3 = 0 into account and using eab

c (2.9b), we obtain the following nonzero
components:

Q11 = Q22 = (

(1)

φ )2

4
, (3.16a)

Q33 = (
∂2

12

(1)

φ
)2 − ∂2

11

(1)

φ ∂2
22

(1)

φ +
(


(1)

φ )2

4
. (3.16b)

In turn, the corresponding components of Ψ are expressed standardly (see [7, 10]). Using
(3.16b), we obtain the combination that we are interested in:

Q33 − 2∂2
12�12 + ∂2

11�22 + ∂2
22�11 = 
�33 + (1 − 2µ2C7)� +

(

(1)

φ )2

4
, (3.17)

where

�33 ≡ −µ2C3((∂1

(1)

φ )2 + (∂2

(1)

φ )2), � ≡ (
∂2

12

(1)

φ
)2 − ∂2

11

(1)

φ ∂2
22

(1)

φ . (3.18)

Equations (3.16) and (3.17) look unconventionally owing to the presence of (

(1)

φ )2/4.
It is just the dependence of Q on the torsion that results in the absence of the contribution

(

(1)

φ )2/4 in the components Q11,Q22 and Q33 obtained in [7]. Recall that the conventional
incompatibility law requires the vanishing of the Einstein tensor calculated by means of the
Riemann–Cartan curvature [51]. This latter includes (see [42]), in addition to the Riemann–
Christoffel part (2.8), a contribution owing to the torsion tensor. The latter is identified as
the dislocation density. That is, the dislocation density contributes into the driving source
of the incompatibility law. In contrast, according to [14, 15, 17], a stress field owing to
the background defect is chosen first. Since the torsion is not considered as an independent
variable, Q11,Q22 and Q33 acquire the form (3.16).

Equations (3.15) allow for a correct limit to their classical version, which is respected by
the background stress potentials of second order fbg and pbg. Let us pass to the classically
looking Q11,Q22 and Q12:

Q11 = ∂2
22Q

′, Q22 = ∂2
11Q

′, Q12 = −∂2
12Q

′. (3.19)

A specific value of the constant Q′ arises from the requirement that
(2)
σ 33 averaged over the

cylinder’s cross-section is zero (see [7, 10]). Then, the equations that govern fbg and pbg take
in our notation the form (κ → 0)



fbg = k
[



(
�

bg
33 + Q′) + (1 − a)(1 − 2µ2C7)�bg

]
,

(3.20)
(1 − a)pbg + a
fbg = −2µ

(
�

bg
33 + Q′),



10666 C Malyshev

where

k ≡ 2µ

1 − 2a
= 2µ

1 + ν

1 − ν
. (3.21)

Moreover, �
bg
33 and �bg are given by (3.18), provided that

(1)

φ is replaced by
(1)

φ bg.

Let us turn to (3.16). In the present approach, (

(1)

φ )2 is the square of the density
distribution of the modified screw dislocation (see [14, 15, 17]):

(

(1)

φ )2 =
(

b

2π
κ2K0(κρ)

)2

. (3.22)

For large distances, K0(κρ) decays exponentially, and (

(1)

φ )2 given by (3.22) can
approximately be replaced by zero. Therefore, the components (3.16) take, also approximately,

their conventional form. Then, three equations (3.15a) reduce to a single one. However, 

(1)

φ

is not negligible for sufficiently moderate κρ, and some care inside the core region ρ � κ−1

is required. In other words, this might be an indication for extension of the geometric
framework by means of the differential-geometric torsion. But this would, in turn, imply that
the teleparallel description is abandoned.

Instead, we shall establish an ‘effective’ picture, which should be viewed as still contained
within the teleparallel framework. However, this description is expected to incorporate certain
features of the approach extended differential-geometrically. Indeed, an independent non-
trivial contribution owing to the torsion would lead to the following equation, instead of
(3.12):



(1)

φ T = κ2(
(1)

φ T −
(1)

φ bg) + T . (3.23)

Here T is a suitable density caused by the non-triviality of the torsion components, say,
T 3

12 = −T 3
21 (this is just appropriate for the screw dislocation along Oz, [51]). The notation

(1)

φ T implies the corresponding solution at a given T . Being considered as an additional source
of incompatibility, T can be assigned to possess near Oz a series expansion with arbitrary,

though adjustable, coefficients. As a result,
(1)

φ T can also acquire, in comparison with
(1)

φ (3.13),
certain modifications near ρ = 0.

Therefore, (

(1)

φ )2 is replaced, on an extended treatment, by (

(1)

φ T )2. This can be
effectively accounted for in the present framework as well. Let us introduce a piecewisely

constant density to ‘regularize’ (

(1)

φ )2 as follows [50]:

(

(1)

φ )2 ∼
(

b

πρ2∗

)2

h[0,ρ∗](ρ), (3.24)

where h[0,ρ∗](ρ) is unity for ρ ∈ [0, ρ∗] (i.e., within a disc) or zero otherwise. It is crucial that
(3.24) should not be treated as a replacement to be iteratively improved. Let us use (3.24) in
(3.16a). Then, an analogue of (3.19) is valid, where the corresponding ‘potential’ g̃ is present:

g̃ = b2

8π2ρ2∗

(
ρ2

ρ2∗
− 1

)
h[0,ρ∗](ρ) + C. (3.25)

The constants C and ρ∗ should be specified later. Both b
2π

κ2K0(κρ) and b
πρ2∗

h[0,ρ∗](ρ) are
δ-like for κ and 1/ρ∗ large enough, respectively. Considered as the surface densities, they
are properly normalized. Therefore, replacement (3.24) looks better, provided that its δ-like
character is sharper.
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Using (3.19), where g̃ given by (3.25) is substituted, from (3.15) we obtain the following
equations [50]:

(
 − κ2)

(

 +

κ2

1 − 2a

)
(f − fbg) = kR, (3.26a)

p = − a

1 − a

f − 2µ

1 − a
(�33 + g̃) +

κ2

1 − a
(f − fbg). (3.26b)

Here, fbg respects the first equation (3.20) and k is given by (3.21). The driving source in
(3.26a) is defined as follows:

R ≡ (
 − κ2)(�33 + g̃ − �
bg
33 − Q′) + (1 − a)(1 − 2µ2C7)(� − �bg) − 1 − a

4
(


(1)

φ )2.

(3.27)

It is assumed that �33 and � (or, analogously, �
bg
33 and �bg) in (3.27) are given by (3.18),

where
(1)

φ (or, correspondingly,
(1)

φ bg) is substituted appropriately. In addition, (

(1)

φ )2 is kept
in (3.27) only formally, as a symbol. The first equation in (3.26a) (would be called, after
[29, 30], the non-homogeneous bi-Helmholtz equation3) is just to be solved in what follows
to determine the stress function f . Equation (3.26b) is needed only to express the stress
component σzz = p.

The governing equations (3.26) are essentially similar to equations that should be expected
under a consideration extended by means of the torsion (see also explanations in section 5.3).
The actual derivation of (3.26) incorporates (3.16) and (3.17), which are subject to (3.24).
Therefore, the teleparallel framework is valid only approximately. However, the free parameter
ρ∗ is coming to play by means of (3.24), and this supports the similarity noted. Indeed, the
arbitrariness owing to ρ∗ is reminiscent of a freedom caused by the non-triviality of appropriate
torsion. Technical complexities, which might appear in the description based on (3.23), should
be avoided now, since they deserve separate studying. Therefore, the strategy based on (3.24)
looks appropriate. Equations (3.26) lead eventually to a self-consistent stress distribution
without an artificial cut-off at the core.

3.3. The driving source of the gauge equation

Before solving (3.26a), simplifications for R given by (3.27) are in order. It is convenient to
investigate R multiplied by ρ2. We use (3.13) and (3.18) and keep the same notation R after
the multiplication. After re-scaling the radial coordinate κρ �→ s, we obtain approximately
(see [50]):

R ≈ s2w(s) +
3∑

a=1

Ra, (3.28)

where

X−2R1 = (c̃ + cs2)K1(s)

(
K1(s) − 2

s

)
,

X−2R2 ≈ −c̃sK1(s)
sφ̃ ∼ 2c̃

s2∗
sK1(s)̃h[0,s∗](s), (3.29)

X−2R3 ≈ −2cs2K1(s)
d

ds
(
sφ̃) = −2c(sK1(s))

2.

3 See [29, 30] for appropriate references and more examples of non-homogeneous bi-Helmholtz equations. A
δ-driven differential equation analogous to (3.26a) has already appeared in [15] as well.
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The following notation is accepted in (3.28) and (3.29):

c̃ ≡ (1 − a)(1 − 2µ2C7) − 4c, c ≡ µ2C3,
(3.30)

s2w(s) ≡ X2 s2

s4∗

[
(1 + a) − 1

2
(s2 − s2

∗)
]

h̃[0,s∗](s),

where a and 1 − a are given by (3.10), s∗ ≡ κρ∗ and h̃[0,s∗](s) is unity at s ∈ [0, s∗] or zero

otherwise (we use C = Q′ in (3.25)). Further, φ̃ in (3.29) implies
(1)

φ with removed multiple
b

2π
. The factor X2 ≡ (

bκ
2π

)2
just points out the fact that the driving source is quadratic in b.

Moreover, 
s is s
−1 d

ds

(
s d

ds

)
and K0 and K1 are the modified Bessel functions [59].

The following comments on (3.28) and (3.29) are in order. Classically, 

(1)

φ bg is Dirac’s
delta-function, and its square would occur instead of (3.22). The equation for the corresponding
stress function fbg is conventionally considered for strictly positive ρ. Then, the corresponding

driving source is not influenced by 

(1)

φ bg. Therefore, it seems inappropriate to account for, at

the same footing with (3.24), the contributions expressible inR by the differences 

(1)

φ −

(1)

φ bg

or ∂ρ(

(1)

φ − 

(1)

φ bg). To put it differently, the regularization allowed classically ‘persists’ into
the non-conventional approach, and (3.28) and (3.29) take their actual form.

The asymptotic properties of R (3.28) are as follows. First, R is well localized since it
contains the modified Bessel functions. At small s, we expand

R(s) � p1s
−2 + p2 log s + p3 + s2(p4 log2 s + p5 log s + p6) + o(s2), (3.31)

where the numerical coefficients p1, p2, . . . , p6 are

p1 = −X2c̃, p2 = 0,

p3 = X2

(
2c̃

s2∗
− αc

)
, p4 = X2 c̃

4
,

(3.32)

p5 = X2

(
c̃

s2∗
− c̃

4

(
1 − 2 log

γ

2

)
+ (1 − α)c

)
,

p6 = w(0) + X2
(

1 − 2 log
γ

2

) ((
1 − 2 log

γ

2
− 8

s2∗

)
c̃

16
+ (α − 1)

c

2

)
,

with α = 1 or α = 3 in p3, p5 and p6. Indeed, the calculation of R3 requires, as soon as
(3.24) is imposed, the differentiation of the step-function. This would result in singularities in
the driving source. Our regularized scheme can thus be destroyed. We use p3, p5 and p6 with
α = 1, when R3 is simply omitted to express the neglect of the corresponding differentiation.
Otherwise (for comparison), α = 3 when R3 is calculated according to (3.29). However, α is
left unspecified to give an indication of both possibilities. Moreover, in spite of p2 ≡ 0, it is
instructive to keep the corresponding term in (3.31). It is to be equated to zero at the end.

4. Solution of the gauge equation

We are going to solve (3.26a) in two steps [50]. First, we consider the non-homogeneous
Bessel equation[

s2 d2

ds2
+ s

d

ds
− s2

]
G(s) = R(s). (4.1)
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The method of variation of parameters [62] provides a general solution to (4.1). We choose
the modified Bessel functions I0 and K0 [59] as two linearly independent solutions of the
associated homogeneous Bessel equation. Solution to (4.1) appears as follows:

G(s) = lim
ε→0

[
I0(s)

(
A(ε) +

∫ s

ε

K0(t)R(t)
dt

t

)
+ K0(s)

(
B(ε) −

∫ s

ε

I0(t)R(t)
dt

t

) ]
,

(4.2a)

where

A(ε) ≡ −
∫ ∞

ε

K0(t)R(t)
dt

t
,

(4.2b)

B(ε) ≡ const +
∫ 1

ε

(
p1

t3
+

p2

t
log t +

(p1

4
+ p3

) 1

t

)
dt .

The behaviour of t−1I0(t)R(t) and t−1K0(t)R(t) for small or large t is important for
justification of (4.2). When t is small, the regularization in G(s) is ensured by means of the
specially constructed A(ε) and B(ε) from (4.2b) (see appendix A). When t is large, K0(t)R(t)

decays as e−2t , whereas I0(t)R(t) behaves, mainly, as a constant. Therefore, the infinity as
an upper bound in A(ε) given by (4.2b) is appropriate. The choice of the integration bounds
implies that G(s) decays exponentially for large s. The important arbitrariness in B(ε) from
(4.2b) should be stressed, which is due to the additive constant denoted as const.

Using appendix A, it is straightforward to expand G(s) for small s:

G(s) � q1s
−2 +

3∑
i=0

q5−i logi s + s2
3∑

i=0

q9−i logi s + · · ·. (4.3)

The numerical coefficients in (4.3) are expressed in terms of the parameters (3.32) as follows:

q1 = p1

4
, q2 = p2

6
, q3 = p1

8
+

p3

2
,

q4 = −const +
3p1

4
, q5 = −const × log

γ

2
− IK − p1

16
,

q6 = p2

24
, q7 = p1

32
+

p3 − p2

8
+

p4

4
,

(4.4)

where IK is given by (A.8) in appendix A, and const in q4 and q5 is introduced by (4.2b). The
coefficients q8 and q9 in (4.3) are practically too complicated and are not of importance below.

As a second step, we express the difference f − fbg ≡ kF , where F respects the non-
homogeneous Bessel equation[

s2 d2

ds2
+ s

d

ds
+ s2

]
F

( s

N

)
= s2

N 2
G

( κ

N
s
)

. (4.5)

The modified stress potential of the second order appears as f = fbg + kF . For convenience,
(4.5) is also written in terms of the new variable s, which is however defined differently:
s ≡ Nρ, where N 2 ≡ κ2

1−2a
. We choose Y0 and J0 as the fundamental solutions of the

homogeneous Bessel equation associated with (4.5) and obtain

F(ρ) = CỸ0(Nρ) + DJ0(Nρ) + IF (ρ),
(4.6)

IF (ρ) ≡ J0(Nρ)

∫ ∞

ρ

Ỹ0(N t)G(κt)t dt − Ỹ0(Nρ)

∫ ∞

ρ

J0(N t)G(κt)t dt,

where G(·) is given by (4.2), and Ỹ0(s) ≡ (π/2)Y0(s). Here the integrals are convergent at
their upper bounds.
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In the preceding consideration (see [50]), the choice of C = 0 and D = 0 has been
made in F(ρ) from (4.6). However, in this case the stress field looks non-conventional for
sufficiently large distances. In the present paper, we put C and D equal to zero, and thus
F(ρ) = IF (ρ). The integral IF (ρ) decays exponentially for large ρ, while for small Nρ we
obtain (appendix B)

F(ρ) � r0 + r1 log ρ + r2 log2 ρ + ρ2
3∑

i=0

r6−i logi ρ + r7ρ
4 log3 ρ + · · · , (4.7)

where

r0 = −ĨY + log
(γ

2
N

)
ĨJ , r1 = ĨJ , r2 = p1

8κ2
,

r3 = p2

24
, r4 =

(
1 − N 2

κ2

)
p1

32
− (1 − log κ)

p2

8
+

p3

8
, (4.8)

r7 = (κ2 − N 2)
p2

384
,

and p1, p2 and p3 are given by (3.32). The coefficients r5 and r6 are given by (B.6)–(B.11),
and ĨY and ĨJ are defined by (B.10) in appendix B.

5. The stress tensor

5.1. The components σρρ and σφφ

Therefore the modified stress potential of second order f takes the form

f = fbg + kIF , (5.1a)

fbg = −ñ log2 ρ + d1ρ
2 + d2 log ρ, ñ ≡ k

p1

8κ2
, (5.1b)

where IF is given by (4.6), and the stress potential fbg is in full agreement with [7]. The
potential fbg respects the following equation, which results from (3.20) for ρ = 0:



fbg = −8̃n

ρ4
. (5.2)

Taking into account (3.8) and (3.11), we represent the stress tensor of the second order in
the cylindrical coordinates as follows:

(2)
σ ρρ = − 1

ρ

d

dρ
f,

(2)
σ φφ = − d2

dρ2
f,

(2)
σ zz = p, (5.3)

where f from (5.1) and p from (3.26b) are substituted. The other components of
(2)
σ are zero.

In the classical problem, we use (5.3) with fbg from (5.1b) and obtain

(
(2)
σ bg)ρρ = 2̃n

log ρ

ρ2
− d2

ρ2
− 2d1,

(5.4)
(
(2)
σ bg)φφ = −2̃n

log ρ

ρ2
+

2̃n + d2

ρ2
− 2d1.

The free parameters d1 and d2 in (5.4) are given by the vanishing of (
(2)
σ bg)ρρ on the boundaries

of the hollow cylinder, e.g., ρ = ρc and ρ = ρe > ρc:

(
(2)
σ bg)ρρ |ρ=ρe = (

(2)
σ bg)ρρ |ρ=ρc = 0. (5.5)
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Substitution of (5.4) into (5.5) allows us to define d1 and d2. For our purposes, it is
more appropriate to assume that ρe is essentially greater than ρc (ρe/ρ is moderate). We
approximately obtain

d1 ≈ ñ

ρ2
e

log
ρe

ρc
, d2 ≈ 2̃n log ρc, (5.6)

and

(
(2)
σ bg)ρρ ≈ 2̃n

ρ2

(
log

ρ

ρc
−

(
ρ

ρe

)2

log
ρe

ρc

)
,

(5.7)

(
(2)
σ bg)φφ ≈ 2̃n

ρ2

(
1 − log

ρ

ρc
−

(
ρ

ρe

)2

log
ρe

ρc

)
.

Note that ñ is proportional to b2 and fbg from (5.1b) is indeed of the second order in b. From
(3.29), (4.2) and (4.6) it is seen that IF is also quadratic in b.

Let us turn to the stress components (5.3) with f substituted from (5.1). The solution
in question depends on several free parameters: ρ∗, const, d1 and d2 (see (3.25), (4.2b) and

(5.1b), respectively). Moreover,
(2)
σ zz from (3.26b) depends on C (= Q′). In order to avoid the

arbitrariness, the asymptotical stresses should be subject to appropriate conditions at κρ � 1
and κρ � 1. For instance, IF is exponentially small for κρ � 1, and therefore f � fbg(ρ).

As a result,
(2)
σ ρρ � (

(2)
σ bg)ρρ and

(2)
σ φφ � (

(2)
σ bg)φφ , where the background stresses are given by

(5.4). However, d1 and d2 in the gauge case are defined below.

In the limit κρ � 1, we use (4.7) and (5.1) and obtain
(2)
σ ρρ and

(2)
σ φφ as follows:

(2)
σ ρρ − (

(2)
σ bg)ρρ � −2r2

log ρ

ρ2
− r1

ρ2
− 2r3 log3 ρ − (3r3 + 2r4) log2 ρ

− 2(r4 + r5) log ρ − (r5 + 2r6) − 4r7ρ
2 log3 ρ + · · · ,

(2)
σ φφ − (

(2)
σ bg)φφ � 2r2

log ρ

ρ2
− 2r2 − r1

ρ2

− 2r3 log3 ρ − (9r3 + 2r4) log2 ρ − 2(3r3 + 3r4 + r5) log ρ

− (3r5 + 2r4 + 2r6) − 12r7ρ
2 log3 ρ + · · · , (5.8)

where the background stresses on the left-hand side are given by (5.4). Now, r1, r2, . . . , and r7

include, for notational compactness, the multiple k from (5.1a). The contributions ∝ ρ−2 log ρ

disappear on both sides of (5.8) since r2 is equal to ñ. The contributions due to r3 and r7

disappear in (5.8) since p2 = 0 in (3.31). However, the terms, which are either divergent or
constant as ρ → 0, are still contained in (5.8).

The number of the free parameters is smaller in comparison with [50] since now C = 0
in (4.6). Therefore, the inappropriate terms in (5.8) should be handled differently. Recall that
the core region corresponds to ρ � κ−1. Let us introduce a fictitious boundary at ρ = ρε,
where ρε � κ−1. We assume that ρ varies within the segment [ρε, ρe], where ρε is allowed
to be arbitrarily small but strictly nonzero. Then we arrive at the following equations:

r1 + d2

ρ2
ε

+ 2r4 log2 ρε + 2(r4 + r5) log ρε + r5 + 2(r6 + d1) = 0,

r1 + d2

ρ2
ε

− 2r4 log2 ρε − 2(3r4 + r5) log ρε − 3r5 − 2(r4 + r6 + d1) = 0, (5.9)

2̃n log ρe − d2 − 2ρ2
e d1 = 0.
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The first two equations in (5.9) imply that the terms, which are either divergent or constant in

(5.8), vanish at ρ = ρε. Therefore,
(2)
σ ρρ and

(2)
σ φφ at ρ = ρε are mainly given by the terms

that go to zero as ρε → 0. The third equation in (5.9) reads that the radial stress is zero at the
outer boundary ρ = ρe. The arbitrariness of d1, d2 and const can be used to meet (5.9). Since
d1, d2 and const are thus determined (as functions of ρε, in fact), we can use them in (5.1) and
(5.3) to produce the stress distribution valid on the ring, say, D[ρε,ρe] confined between ρ = ρε

and ρ = ρe.
Let us consider an infinite sequence of concentric circles with monotonically decreasing

radii ρ = ρε (ρε’s remain however nonzero). Each of the corresponding rings D[ρε,ρe] is
completely covered by a disc with the same external boundary ρ = ρe but with a puncture at
ρ = 0. The stress distributions defined on the rings also form a sequence. It can naturally
be considered as converging to an appropriate solution defined on the punctured disc. Such

a limit is expected to exist, since the boundary values
(2)
σ ij |ρ=ρε

go to zero for decreasing ρε.
Therefore, our attention is focused at the rings possessing sufficiently small internal radii.
Note that even definition (4.2) is concerned with a hollow domain possessing a sufficiently
small internal radius. It is just the regularization in (4.2), which allows us to send this radius
to zero immediately.

To extract the dependence on const in (5.9), let us turn to q4 and q5 from (4.4). Using
appendix B, one can establish that r1 in (4.8) and r5, r6 in (B.11) depend on const as follows:

r1 ≡ −C̃ + r̃1, r5 ≡ −κ2

4
C̃ + r̃5, r6 ≡ qκ2

4
C̃ + r̃6. (5.10)

The following notation is accepted in (5.10):

C̃ ≡ const × k

κ2 + N 2
, q ≡ 1 − log

(γ

2
κ
)

, (5.11)

where κ2 = µ/� (µ is the shear modulus and � arises in (2.10)) and (κ/N )2 = 1 − 2a.
Moreover, a and k are given by (3.10) and (3.21), respectively. We substitute (5.10) into (5.9)
and rewrite the result as a single 3 × 3 matrix equation:a 0 1

b 2ρ2
ε 1

0 2ρ2
e 1

 C̃

d1

d2

 =
l1

l2

l3

 , (5.12)

where

a ≡ −1 +
(κρε)

2

4
,

b ≡ −1 − (κρε)
2

2

(
1

2
− q + log ρε

)
,

l1 ≡ 2r4ρ
2
ε log ρε + (r4 + r̃5)ρ

2
ε − r̃1, (5.13)

l2 ≡ −2r4ρ
2
ε log2 ρε − 2(r4 + r̃5)ρ

2
ε log ρε − (̃r5 + 2̃r6)ρ

2
ε − r̃1,

l3 ≡ 2̃n log ρe.

Equation (5.12) is solved for d1, d2 and C̃ by Cramer’s rule:

C̃ = 2

D
(
ρ2

e (l2 − l1) + ρ2
ε (l1 − l3)

)
,

d1 = 1

D
(al2 − bl1 + l3(b − a)), (5.14)

d2 = 2

D
(
ρ2

e (bl1 − al2) + ρ2
ε al3

)
,
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where D ≡ 2aρ2
ε + 2(b − a)ρ2

e . The parameters C̃ (i.e., const, see (5.11)), d1 and d2 thus
obtained should be used in f from (5.1).

Let us assume that ρε is sufficiently small (the so-called logarithmic approximation):

1 � κ � 1

ρε

� 1

ρε

log
1

ρε

. (5.15)

Then, ratios (5.14) can be represented in the perturbative form

C̃ � −4r4

κ2
log

1

ρε

+
4

κ2
(̃r5 + (1 + q)r4) + · · · ,

d1 � 1

ρ2
e

(
ñ log

ρe

ρ1
+ 2

r4

κ2
log

1

ρε

)
+ · · · , (5.16)

d2 � −4
r4

κ2
log

1

ρε

− 2̃n log
1

ρ1
+ · · · ,

where dots imply terms that tend to zero as ρε → 0. In addition, the new length parameter ρ1

is intended to express the contributions which are constant as ρε → 0:

2̃n log
1

ρ1
≡ r̃1 − 4

κ2
(̃r5 + (1 + q)r4), (5.17)

where q is given by (5.11). Using (5.4) and (5.16), we obtain sufficiently far from the core:

(2)
σ ρρ ≈ 2̃n

ρ2

(
log

ρ

ρ1
−

(
ρ

ρe

)2

log
ρe

ρ1

)
− 4

r4

κ2
log ρε

(
1

ρ2
− 1

ρ2
e

)
,

(5.18)
(2)
σ φφ ≈ 2̃n

ρ2

(
1 − log

ρ

ρ1
−

(
ρ

ρe

)2

log
ρe

ρ1

)
+ 4

r4

κ2
log ρε

(
1

ρ2
+

1

ρ2
e

)
.

As far as the asymptotic expansions (5.18) are concerned, it is crucial that r4 can be made
equal to zero. Indeed, using r4 in the form (4.8) (where p1 and p3 from (3.32) are used, and
p2 is zero), we obtain ρ2

∗ from the equation r4 = 0 as follows:

ρ2
∗ = B(η, α)

κ2
, B(η, α) ≡ 8(1 − ν)(1 − η)

α(1 − ν)η − 2ν(1 − η)
,

(5.19)

η ≡ 4(1 + ν)
µ2C3

1 − 2µ2C7
,

where α = 1 or α = 3, according to (3.32). Equations (5.19) lead to the positivity of
the coefficient-function B(η, α). The validity of (3.24) holds better whenever κ−1 and
ρ∗ are smaller. If the scale κ−1 is small enough, a bound B0 can be found to restrict
B(η, α) : 0 < B(η, α) � B0. If so, ρ∗ from (5.19) is estimated as ρ∗ = O(κ−1). In terms of
η, the corresponding restriction takes the form(

1 +
α

2

1 − ν

ν

)−1

< (1 + U)−1 � η < 1, U ≡ α(1 − ν)B0

8(1 − ν) + 2νB0
, (5.20)

where 0 < ν � 1/2 for isotropic materials.
It is straightforward to rewrite (5.20) in terms of the elastic parameters C3 and C7:

C7 + 2(1 + ν)C3 <
1

2µ2
� C7 + 2(1 + ν)(1 + U)C3, C3 > 0, (5.21a)

C7 + 2(1 + ν)(1 + U)C3 � 1

2µ2
< C7 + 2(1 + ν)C3, C3 < 0. (5.21b)
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Further, (5.21) can be re-expressed [7] in terms of the parameters m′ and n′ from (3.4), which
can in turn be related [4] to the third-order elastic moduli of the cubic crystals. In other words,
the choice of material is restricted by (5.21). The numerical data provided by [4] witness
that these conditions look realistic for certain materials. However, to discuss (5.21) from the
viewpoint of real crystallography is beyond the scope of the present investigation.

Straightforward usage of (4.6), (5.1) and (5.3) leads us to the following general expression
for the stress components:

(2)
σ ρρ = (

(2)
σ far)ρρ − kρ−1I ′

F ,
(5.22)

(2)
σ φφ = (

(2)
σ far)φφ + k(N 2IF + ρ1I ′

F − G),

where k and G are given by (3.21) and (4.2), correspondingly, and I ′
F (the prime implies the

differentiation d/dρ) is expressed as follows:

N−1I ′
F = Ỹ1(Nρ)

∫ ∞

ρ

J0(N t)G(κt)t dt − J1(Nρ)

∫ ∞

ρ

Ỹ0(N t)G(κt)t dt .

It is assumed that Ỹ1(·) ≡ (π/2)Y1(·) (similar to Ỹ0 in (4.6)). Now, the subscript ‘far’ labels
the stress components in (5.22) in order to emphasize the non-conventional choice of d1 and
d2, which corresponds to (5.16), provided that the internal radius of the ring D[ρε,ρe] is small
enough. We also obtain the sum of the second-order stress components:

(2)
σ ρρ +

(2)
σ φφ = (

(2)
σ far)ρρ + (

(2)
σ far)φφ + k(N 2IF − G). (5.23)

Since r4 is zero for ρ2
∗ from (5.19), the limit ρε → 0 is suitable in (5.16) to eliminate

ρε. Then, d1 and d2 acquire the classically known form (5.6), though ρ1 is present instead of
ρc. The limiting value of the parameter const (see (4.2)) is also expressed with the help of
(5.11) and (5.16), provided that ρε decreases to zero. The large-distance stresses (5.18) take at
r4 = 0 the classical form (5.7). Note that the axis Oz is not captured by the present approach,
as far as the limiting transition is allowed. This is in agreement with the regularization of the

density profile at ρ = 0 in section 3. The components (
(2)
σ far)ρρ and (

(2)
σ far)φφ reduce, after

the shrinking of the internal boundary of the ring, to (5.18) (with r4 equated to zero) and
should be distinguished from the analogous ones given by (5.7). Eventually, there is no cut-off
around the dislocation’s core for the second-order stresses expressed by (5.22), provided that
the numerical parameters are substituted appropriately.

5.2. The component σzz

Let us consider the stress component
(2)
σ zz = p. Classically, the second equation in (3.20)

implies the following representation [7]:

(2)
σ zz = ν(

(2)
σ ρρ +

(2)
σ φφ) − 2µ(1 + ν)

(
�bg

zz + Q′), (5.24)

where fbg from (5.1b) is used for the stresses on the right-hand side (the respective subscript

is omitted for brevity), and
(1)

φ bg = (−b/2π) log ρ is substituted to express �
bg
zz . As far as

equation (5.24) is concerned, it is assumed that the argument ρ varies within the segment

[ρc, ρe], and Q′ is determined from the requirement that
(2)
σ zz averaged over D[ρc,ρe] is zero (the

so-called ‘mean stress theorem’; see [4]). Then, representation (5.24) reads for ρe � ρc:

(2)
σ zz ≈ 2

[
νñ +

(
b

2π

)2

µ3(1 + ν)C3

][
1

ρ2
− 2

ρ2
e

log
ρe

ρc

]
. (5.25)
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Let us turn to the stress component
(2)
σ zz from (3.26b) of the modified defect

(2)
σ zz = ν(

(2)
σ ρρ +

(2)
σ φφ) − 2µ(1 + ν)(�zz + g̃) + κ2(1 + ν)(f − fbg). (5.26)

Now ρ varies within [ρε, ρe]. From the previous considerations it is clear that
(2)
σ ρρ +

(2)
σ φφ

and �zz, taken at ρ = ρε, decrease as ρε → 0. Nevertheless,
(2)
σ zz behaves, sufficiently close

to Oz, somewhat artificially. The reason is that the logarithmic terms dominate in f − fbg

at ρ small enough. However, this is not an obstacle to view the rings D[ρε,ρe], as well as (in
the limiting sense) the punctured disc, as the domains of definition of the stress distributions.

Indeed,
(2)
σ zz from (5.26), averaged over D[ρε,ρe], is finite, provided that ρε goes to zero.

Let us obtain
(2)
σ zz from (5.26) at sufficiently large distances, where f − fbg (=kIF ) is

exponentially small. Using (5.18) at r4 = 0, we obtain

(2)
σ zz ≈ 2νñ

[
1

ρ2
− 2

ρ2
e

log
ρe

ρ1

]
− 2µ(1 + ν)

[
Q′ −

(
b

2π

)2
c

ρ2

]
. (5.27)

We determine Q′ approximately:

Q′ ≈
(

b

2π

)2

2c
log(ρe/ρ2)

ρ2
e

, (5.28)

where another length ρ2 is introduced, namely,(
b

2π

)2

2c log
1

ρ2
≡

(
b

4π

)2

− 2
∫ 1

0
�zzρ dρ

− 2
∫ ∞

1

[
�zz +

(
b

2π

)2
c

ρ2

]
ρ dρ + 2κ2 1 + ν

1 − ν

∫ ∞

0
IFρ dρ, (5.29)

provided that ρε → 0, and the upper integration bound ρe is replaced approximately by
infinity.

Therefore, (5.27) depends on two scales, which are, in principle, different in our
consideration: ρ1 from (5.17) and ρ2 from (5.29). To re-write (5.27) more conventionally, it
is appropriate to introduce another length, say ρm, as follows:[
νñ +

(
b

2π

)2

µ(1 + ν)c

]
log

1

ρm
≡ νñ log

1

ρ1
+

(
b

2π

)2

µ(1 + ν)c log
1

ρ2
. (5.30)

Substituting Q′ from (5.28) into (5.27) and using (5.30), we obtain

(2)
σ zz ≈ 2

[
νñ +

(
b

2π

)2

µ(1 + ν)c

][
1

ρ2
− 2

ρ2
e

log
ρe

ρm

]
. (5.31)

Equation (5.31) looks similar to (5.25), except that now ρm is present instead of ρc.
The classical answers for d1 and d2 are given at ρe � ρc by (5.6). Since d1 and d2 from

(5.16) include the constant contributions, the agreement between (5.6) and (5.16) is due to
the newly defined length ρ1 from (5.17). The mean stress theorem implies that ρ2 coincides,
classically, with the lower integration boundary ρc, provided that ρc remains unspecified.
Instead, Q′ in (5.28) is concerned with another length ρ2 from (5.29). This is because �zz is
unconventional inside the core. In the present approach, two different lengths arise. Definition
(5.30) is only to obtain the classically looking representation (5.31).
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We use g̃ (3.25), where C = Q′ with Q′ given by (5.28), and we rewrite the stress
(2)
σ zz

expressed by (5.26):

(2)
σ zz = ν

(
(2)
σ ρρ +

(2)
σ φφ

)
− 2µ(1 + ν)

[
�zz − 2

ρ2
e

∫ ρe

0
�zzρ dρ

]
− 2µ(1 + ν)

(
b

4π

)2 [
1

ρ2
e

+
2

ρ2∗

(
ρ2

ρ2∗
− 1

)
h[0,ρ∗](ρ)

]
+ 2κ2 µ(1 + ν)2

1 − ν

[
IF − 2

ρ2
e

∫ ρe

0
IFρ dρ

]
. (5.32)

Moreover, using (5.23) we can further rewrite (5.32) for sufficiently large ρe as follows:
(2)
σ zz ≈ ν((

(2)
σ far)ρρ + (

(2)
σ far)φφ) − 2µ(1 + ν)�zz

− 2µ(1 + ν)

(
b

2π

)2 [
2c

ρ2
e

log
ρe

ρ2
+

1

2ρ2∗

(
ρ2

ρ2∗
− 1

)
h[0,ρ∗](ρ)

]
+ k(N 2IF − νG), (5.33)

where k,G, IF and ρ2
∗ are given by (3.21), (4.2), (4.6) and (5.19), respectively. Expression

for �zz from (3.18) in the polar coordinates takes the form �zz = −c(∂ρ

(1)

φ )2, where
(1)

φ is
given by (3.13). The behaviour of �zz for sufficiently large distances is similar to that of �

bg
zz ,

although is different within the core.
Let us recall that a stationary Schrödinger equation obtained in the effective mass

approximation [63] has been used for the conduction electrons in the dislocated [13] or
disclinated crystals [44, 45]. The influence of the defects has been accounted for via the
deformation potential given by the trace of the strain tensor (i.e., by the dilatation). The gauge
and/or geometric approaches to various effects due to the dislocations (due to the torsion)
attract considerable attention: [64–70, 72, 73]4.

The dilatation is non-trivial for the screw dislocation just because of the strains of the
second order. Sufficiently far from the core, the dilatation depends on 1/ρ2 just by means of
m′ and n′ from (3.4) (see [7]). The results obtained above can be applied to the Schrödinger
equation, as is discussed in [13]. Indeed, the solution [13] is valid only outside the core, and,
say, a traction-free condition is still required. In turn, a possible influence of the dilatation,
obtainable by the present approach, on a local shape of the wavefunction can be investigated
in the vicinity of the core region. The corresponding results should be comparable with
appropriate lattice-based investigations. Note that the disclination core’s radii have been used
in [44, 71] for description of the corresponding electron localization.

5.3. Remarks on the logarithmic approximation

The asymptotic relations (5.16) give an indication of the fact that ratios (5.14) should be
re-arranged perturbatively for log(1/ρε) and ρe sufficiently large. It is instructive to re-
derive the leading terms in (5.16) by means of a more straightforward use of the logarithmic
approximation at r4 = 0. Indeed, let us reconsider (5.12), provided that the parameters (5.13)
are taken in the principal order as follows:

a ≈ −1, b ≈ −1 − (κρε)
2

2
log ρε,

(5.34)
l1 ≈ −̃r1, l2 ≈ −̃r1 − 2

o
r5ρ

2
ε log ρε.

4 For more references on other types of defects, see [57].
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Here, r4 = 0 in r̃1, and the special notation
o
r5 is chosen for r̃5 at r4 = 0. Besides, l3 is kept

like in (5.13). We replace in (5.12) the entry equal to 2ρ2
ε by zero. Then, in agreement with

(5.16), the solution reads

C̃ = 4
o
r5

κ2
, d1 = ñ

ρ2
e

log
ρe

ρ1
, d2 = 2̃n log ρ1, (5.35)

where ρ1 agrees with (5.17).
Moreover, one can estimate ρ1, provided that log κ is large enough. With regard to the

definition by means of equation (5.10), we extract the dependence of r̃1 and r̃6 on the large
logarithm as follows (r4 is zero):

r̃1 = q1

κ2
log κ +

o
r1, r̃6 = o

r5 log κ +
o
r6. (5.36)

The terms
o
r1 and

o
r6 in (5.36) are simply intended to denote the corresponding remnants, which

are finite, provided that log κ is growing. We can use (5.36) in (5.13) and again directly solve
(5.12). Then, d1 and d2 appear just in the form (5.35) with ρ1 = B1/κ , where

2̃n log B1 ≡ −o
r1 +

4

κ2

o
r5. (5.37)

It is seen that (5.37) agrees with (5.17). The radius ρ2 can also be estimated. From (5.29) we
obtain ρ2 = B2/κ , where

2c log B2 ≡ −1

4
− 2c

∫ 1

0
(1 − sK1(s))

2 ds

s
, (5.38)

and c is given by (3.30). Therefore, the logarithmic approximation allows us to determine
the leading behaviour of C̃, d1 and d2, as well as to estimate ρ1 and ρ2. Note in passing
that a certain influence of the regularization in (4.2) on B1 from (5.37) and B2 from (5.38)
should be accounted for, though elsewhere (since specific numerical estimates based on the
crystallographic data are required).

Result (5.35) should be commented as follows. Let us introduce a sufficiently small
positive ∈ by the requirement: absolute values of the stresses, which are smaller than ∈ (say,

|(2)
σ ij | � ∈

2 ), should be treated, for engineering, as indistinguishable from zero. Then, the

shrinking of the boundary at ρ = ρε can be ceased just for those boundary values
(2)
σ ij |ρ=ρε

,
which respect this estimate. At the same time, (5.15) holds, and thus (5.35), (5.37) and
(5.38) are valid. The large distance behaviour looks conventional though includes now ρ1

and ρ2, which are dictated by a choice of material. Provided ρε is thus fixed, the stress
(2)
σ zz

remains bounded outside an infinitesimally thin tube around Oz. It is essential that under the
prescribed accuracy ∈, a distant ‘observer’ outside the core is dealt only with the physical
stresses improved by means of ρ1 and ρ2. These stresses are insensitive to particular ρε’s.

Let us turn again to our geometric interpretation. Let us imagine for a moment that the
differential-geometric torsion is taken into account in order to make (3.16) conventionally

looking. Then, 

(1)

φ T comes to play instead of 

(1)

φ . Since a specific shape of appropriately

localized density T is unclear, (3.24) can be applied, as a simplification, just to 

(1)

φ T . As
a result, the driving source R should be changed. The local properties of this new R can
be estimated. The modifications are expectable for p4, p5 and p6 from (3.31). However,
these changes do not influence the coefficients we consider in (4.7). A change of shapes
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of the profiles of the stress components is expectable in the middle of the core, but this is
beyond our scope. It is important that ρ1 in (5.17) and ρ∗ in (5.19) should not be influenced

when 

(1)

φ T is subject to (3.24). Only ρ2 from (5.29) should be replaced, since it is defined
‘globally’. Thus, the present picture is almost the same as that with the torsion admitted but
handled approximately. To avoid a specification of T , it is appropriate to keep our teleparallel
interpretation.

6. Discussion

The stress potential of the non-singular screw dislocation is found in the quadratic
approximation. It is given by the sum of the conventional part and the gauge contribution.

The general expression (5.22) for the stress components of second order
(2)
σ ρρ and

(2)
σ φφ is

also obtained by means of appropriate differentiations of the stress potential. In addition, the

general expression for the stress
(2)
σ zz is elaborated as well: see, for instance, (5.32) or (5.33).

The main attention is paid to the asymptotic properties of the stresses in question. To ensure
their self-consistency, the arbitrariness of certain constants in the general solution for the stress
potential is used.

Sufficiently far from the core, the second-order stresses obtained,
(2)
σ ρρ,

(2)
σ φφ and

(2)
σ zz

are in agreement with [7], although now they include the new lengths ρ1 and ρ2. The non-
conventional part of the total stress potential is responsible for the localized contribution into
the full stress distribution. As a result, the modification of the short-distance behaviour is

as follows:
(2)
σ ρρ and

(2)
σ φφ tend to zero, while

(2)
σ zz grows logarithmically (although

(2)
σ zz is

integrable, as required in [7]) in the close vicinity of Oz. There is no artificial cut-off at an
internal boundary. The ‘exterior’ (with respect to the core region) solution for the second-order
stresses plays a central role in the picture presented. This is because of its improvement due
to the self-consistent arising of ρ1 and ρ2. The general solution is characterized by one more
length ρ∗ which is a half-width of the effective defect’s density profile.

The lengths ρ1, ρ2 and ρ∗ are expressed through the elastic moduli of second and third
orders. The appearance of several lengths correlates with the absence of a sharp boundary
around the core in the first-order pictures in [14, 15, 17, 19]. In other words, a concept of
‘transition shell’ looks helpful for characterization of the solution obtained. This shell would
separate two domains: a compact region under the shell, where the strains are rather finite,
and an outer bulk. The solution obtained should be less reliable under the shell (where the
effects of discreteness are comparable with those of strong elastic nonlinearity; see [3, 4]).
Within the transition shell, the quadratic corrections both of the conventional and of the gauge
origin (i.e., due to IF in the stress potential) should be important. Outside the shell (i.e., in
the bulk), the conventional terms become more valuable, since the gauge contributions are
strongly decaying. The radii obtained ρ1, ρ2 and ρ∗ should characterize the location and the
extent of the transition shell. More generally, they seem to display the dislocation cores as
radially layered regions.

The radii ρ∗, ρ1 and ρ2 include the basic length 1/κ (≡√
�/µ), which can be adjusted to the

interatomic scale even in the first order: see, for instance, [14, 17]. Analogous identifications
can also be found in [20, 24, 26]. Here � is the gauge-material parameter (see (2.10)) and µ

is the shear modulus. However, the corresponding coefficients B(η, α), B1 and B2 given by
(5.19), (5.37) and (5.38), respectively, are strictly influenced by the crystallographic moduli of
second and third orders. Mutual comparisons of the coefficients and more specific statements
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on the properties of the transition shell should be done elsewhere. The numerically obtainable
values for ρ1, ρ2 and ρ∗ can be compared, in principle, with appropriate scales provided by the
semi-discrete models of the cores (see in [3, 4, 10]). On the other hand, attempts at matching
the radii in accordance with the experimental observations may result in independent estimate
for 1/κ . Such estimate can, in turn, be compared with 1/κ obtainable by means of the
first-order considerations.

As far as the numerical estimates are concerned, the isotropy requirement should be taken
into account, since the number of the elastic constants of third order for the cubic crystals is
6 (see [4, 10]). Moreover, strong couplings could modify the elastic parameters within the
core in comparison with those outside it (see [40]). Note that [36] also provides the radius of
the screw dislocation as a function of the elastic constants (of second order though) and of the
lattice spacings of the crystal.

Strains and displacements within the transition shell can, in principle, be elaborated with
the help of the present approach. For instance, the displacements of the first order in the core
region are discussed in [14, 17]. The next order corrections to those displacements can be
obtained within the shell. Here, the technical issue [74] could be helpful. Thus corrected
displacements should be comparable with the semi-discrete calculations subject to the so-
called flexible boundary conditions (see [75, 76]). Direct observations of the dislocation cores
by means of the high resolution electron microscopy can also be used for comparison (for
more references on the observation and modelling of the dislocation cores at atomic level
in semiconductors, for instance, see [78]). The solution obtained can also be tested for the
problems where just the second-order elasticity is relevant, e.g., for the elastic waves or the
electron (see section 5.2) scattering, etc (see [4, 9]).

The continuation obtained for the stresses is just due to the gauge equation considered
as the incompatibility law. In turn, our constitutive equations imply that the elastic energy is
written up to the third order. But the quadratic constitutive law is only an approximation for
essentially nonlinear situation. Clearly, the present picture does not pretend to simulate the
stress distribution in the middle of the core, where both the atomistic structure and the finite
elasticity are crucial (see [77] where a nonlinear elasticity approach with flexible boundary
is discussed as a way for improving the semi-discrete techniques). Nevertheless, the stress
distribution provided by the present model of the screw dislocation is self-contained outside a
certain shell, and it seemingly remains satisfactory within this shell as well.

Our investigation demonstrates that the Hilbert–Einsteinian-gauge approach is flexible
enough, since it allows, in two orders, the self-consistent description for the non-singular
screw dislocation. Certain features of an extended picture could be discovered in the present
model. It can be used as a base for further, more involved, treatments. Application to the edge
dislocation would be also desirable.
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Appendix A

Appendices A and B contain intermediate results, which are helpful for expanding the stress
potential f in (5.1) (see also [50]). Starting with the series expansion (3.31) and using the
Bessel functions in the series form [59], we go over to the corresponding series F from (4.7).

First, let us estimate G(s) from (4.2). To begin with, we expand the products t−1K0(t)R(t)

and t−1I0(t)R(t) for a small argument t � 1:

t−1I0(t)R(t) � p1t
−3 + p2t

−1 log t +
(p1

4
+ p3

)
t−1

+
(
p4 log2 t +

(p2

4
+ p5

)
log t + k̂

)
t + · · ·; (A.1)

t−1K0(t)R(t) � −p1 log
(γ

2
t
)

t−3 − (
p2 log2 t + k1 log t + k2

)
t−1

− (
p4 log3 t + k3 log2 t + k4 log t + k5

)
t + · · ·, (A.2)

where p1, p2, . . . , p5 are given by (3.32), and the coefficients k1, k2 and k3 are expressed as
follows:

k1 = p1

4
+ log

(γ

2

)
p2 + p3,

k2 = −p1

4
+ log

(γ

2

) (p1

4
+ p3

)
, (A.3)

k3 = p2

4
+ log

(γ

2

)
p4 + p5

(γ is the Euler constant). The parameters k4, k5 and k̂ are not used in the present paper and
can be found in [50].

Using (A.1) and (A.2), we obtain the following estimates for s � 1:

K0(s)

(
B(ε) −

∫ s

ε

I0(t)R(t)
dt

t

)∣∣∣∣
ε→0

� s−2 (K1 log s + K2)

+
3∑

i=0

K6−i logi s + s2
3∑

i=0

K10−i logi s + · · · , (A.4)

where

K1 = −p1

2
, K2 = − log

(γ

2

) p1

2
, K3 = p2

2
, K4 = p1

4
+ log

(γ

2

) p2

2
+ p3,

K5 = −const +

(
3

2
+ log

γ

2

)
p1

4
+ log

(γ

2

)
p3,

K6 = −const × log
γ

2
+

(
1 + 3 log

γ

2

) p1

8
, K7 = p2

8
+

p4

2
,

K8 = p1

16
+ log

(γ

2

) p2

8
+

p3

4
−

(
1 − log

γ

2

) p4

2
+

p5

2
. (A.5)

Further, we get

I0(s)

∫ ∞

s

K0(t)R(t)
dt

t
� s−2 (I1 log s + I2)

+
3∑

i=0

I6−i logi s + s2
3∑

i=0

I10−i logi s + · · · , (A.6)
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where

I1 = −p1

2
, I2 = −

(
1 + 2 log

γ

2

) p1

4
, I3 = p2

3
, I4 = k1

2
,

I5 = −p1

8
+ k2, I6 = IK +

(
1 + 2 log

γ

2

) 3p1

16
,

I7 = p2

12
+

p4

2
, I8 = k1

8
− 3p4

4
+

k3

2
,

(A.7)

and k1, k2 and k3 are given by (A.3). The numerical constant IK in I6 from (A.7) implies the
regularized value of the integral

IK ≡
∫ ∞

1
K0(t)R(t)

dt

t
+

∫ 1

0

[
K0(t)R(t) + p1 log

(γ

2
t
)

t−2 + k2 + k1 log t + p2 log2 t

]
dt

t
.

(A.8)

Finally, the series (4.3) is obtained by subtracting the series (A.6) from (A.4). The
resulting coefficients (4.4) are calculated by means of (A.5) and (A.7): qi = Ki+1 − Ii+1 for
i = 1, 2, . . . , 7. Since K1 − I1 = 0, the contribution ∝ s−2 log s is absent in (4.3).

Appendix B

Now let us estimate IF (ρ) from (4.6). First, we expand the products tJ0(N t)G(κt) and
t Ỹ0(N t)G(κt) for a small argument t � 1:

tJ0(N t)G(κt) � q1

κ2
t−1

+ t

(
q2 log3(N t) +

2∑
i=0

n3−i logi (N t)

)
+ t3

3∑
i=0

n7−i logi (N t) + · · · , (B.1)

t Ỹ0(N t)G(κt) � q1

κ2
t−1 log

(γ

2
N t

)
+ t

(
q2 log4(N t) +

3∑
i=0

m4−i logi (N t)

)
+ t3

4∑
i=0

m9−i logi (N t) + · · · , (B.2)

where the parameters n1, n2, . . . , n5 are expressed by means of the previously found
coefficients (4.4):

n1 = 3 log
( κ

N

)
q2 + q3,

n2 = 3 log2
( κ

N

)
q2 + 2 log

( κ

N

)
q3 + q4,

n3 = −N 2

κ2

q1

4
+ log3

( κ

N

)
q2 + log2

( κ

N

)
q3 + log

( κ

N

)
q4 + q5, (B.3)

n4 = −N 2 q2

4
+ κ2q6,

n5 = −N 2 q3

4
+ κ2q7 + 3 log

( κ

N

)
n4.

The coefficients m1,m2, . . . , m6 are expressed by means of n1, n2, . . . , n5 and q1 and q2:

m1 = log
(γ

2

)
q2 + n1, m2 = log

(γ

2

)
n1 + n2,

m3 = log
(γ

2

)
n2 + n3, m4 = N 2

κ2

q1

4
+ log

(γ

2

)
n3,

m5 = n4, m6 = N 2 q2

4
+ log

(γ

2

)
n4 + n5.

(B.4)
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The coefficients n6 and n7, and m7,m8, and m9 are present in (B.1) and (B.2) only formally:
their explicit values are not of importance for the present investigation.

Using (B.1)–(B.4), we estimate the integrals that constitute IF (ρ) and obtain

IF (ρ) � f0 + f1 log2(Nρ) + f2 log(Nρ)

+ ρ2
3∑

i=0

f7−i logi (Nρ) + ρ4f9 log3(Nρ) + · · ·, (B.5)

where

f0 = log
(γ

2

)
IJ − IY , f1 = q1

2κ2
, f2 = IJ , f4 = q2

4
,

f5 = −N 2

κ2

q1

8
+ log

(γ

2

) n2

2
+

(
1 − log

γ

2

)
Ŷ1 − Ĵ1, (B.6)

f6 = N 2

4

(
−IJ +

q1

κ2

)
+ log

(γ

2

)
Ŷ1 + Ŷ2 − Ĵ2,

f7 = N 2

4

(
IY +

(
1 − log

γ

2

)
IJ

)
+ log

(γ

2

)
Ŷ2 − Ĵ3, f9 = n4

16
.

The following notation is accepted in (B.6):

Ŷ1 = 3q2

4
+

n2 − n1

2
, Ŷ2 = − Ŷ1

2
+

n3

2
, (B.7)

Ĵ1 = 3q2

2
− 3m1

4
+

m2

2
, Ĵ2 = −Ĵ1 +

m3

2
, Ĵ3 = − Ĵ2

2
+

m4

2
. (B.8)

In addition, we denote

IJ ≡ ĨJ − q1

κ2
logN ,

(B.9)

IY ≡ ĨY − q1

κ2
logN

(
logN

2
+ log

γ

2

)
,

where

ĨJ ≡ lim
ε→0+

(
−

∫ ∞

ε

J0(N t)G(κt)t dt +
q1

κ2

∫ 1

ε

dt

t

)
,

(B.10)

ĨY ≡ lim
ε→0+

(
−

∫ ∞

ε

Ỹ0(N t)G(κt)t dt +
q1

κ2

∫ 1

ε

log
(γ

2
N t

) dt

t

)
.

It should be pointed out that possible contributions ∝ log4(Nρ) are cancelled in (B.5): for
instance, the coincidence of the coefficients n4 and m5 (see (B.4)) results in the absence of the
corresponding term of the fourth degree in ρ. Moreover, n5 (B.3) and m6 (B.4) are necessary
to calculate f9 (B.6).

Eventually, estimate (4.7) appears after re-arrangement of (B.5). Generally, the
corresponding coefficients r0, r1, . . . , r7 look as follows:

r0 = f0 + f1 log2 N + f2 logN , r1 = 2f1 logN + f2,

r2 = f1, r3 = f4, r4 = 3f4 logN + f5,

r5 = 3f4 log2 N + 2f5 logN + f6, (B.11)

r6 = f4 log3 N + f5 log2 N + f6 logN + f7,

r7 = f9 = (κ2 − N 2)
p2

384
.
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We obtain r0, r1, r2 and r3 by means of (B.6). To obtain r4 (4.8), we re-express f5:

f5 =
(

1 − N 2

κ2

)
p1

32
−

(
1 + log

N
κ

)
p2

8
+

p3

8
. (B.12)

Now we turn to r5 and r6 from (5.10). Although f6 and f7 are left undone, their dependence
on const can be extracted by means of (B.6)–(B.10) as follows:

f6 = −κ2 C̃

4k
+ · · · , f7 = κ2(q + logN )

C̃

4k
+ . . . , (B.13)

where C̃ and q are determined by (5.11). Since f4 (B.6) and f5 (B.12) are free from const,
equation (5.10) is indeed valid.
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[5] Kröner E and Seeger A 1959 Arch. Rat. Mech. Anal. 3 97
[6] Seeger A and Mann E 1959 Z. Naturforsch. A 14 154

Seeger A and Mann E 1966 United Kingdom Atomic Energy Authority AERE–Trans 1062 (Engl. transl.)
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Pfleiderer H, Seeger A and Kröner E 1966 United Kingdom Atomic Energy Authority AERE–Trans 1061 (Engl.
transl.)

[8] Wesołowski Z and Seeger A 1968 On the screw dislocation in finite elasticity Mechanics of Generalized
Continua: Proceedings of the IUTAM Symposium on the Generalized Cosserat Continuum and the Continuum
Theory of Dislocations with Applications ed E Kröner (Berlin: Springer) pp 294–7
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